99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A new modified deep learning technique based on physics-informed neural networks (PINNs) for the shock-induced coupled thermoelasticity analysis in a porous material

&
Pages 798-825 | Received 05 Sep 2023, Accepted 11 Feb 2024, Published online: 10 Apr 2024
 

Abstract

In this article, a new modified deep learning (DL) method based on physics-informed neural networks (PINNs) is proposed for analyzing generalized coupled thermoelasticity in a porous material under shock loadings using Lord–Shulman (LS) theory. The PINN-based method demonstrates remarkable capabilities in solving differential equations and identifying unknown parameters. It is employed to solve a system of coupled partial differential equations (PDEs) governing a porous half-space material, considering thermal and strain relaxation coefficients in the LS theory. The optimal structure of the PINN is investigated through sensitivity analyses. Two adaptive sampling techniques, residual-based adaptive refinement (RAR) and residual-based adaptive distribution (RAD), are employed to enhance solution quality within the optimized architecture. The proposed forward PINN utilizes known values of field variables at initial and boundary conditions. The efficiency and effectiveness of the proposed PINN approach are demonstrated through three distinct scenarios. Non-parametric statistical tests and L2 relative error analysis validate the extraordinary potential of the proposed PINN-based method in accurately capturing the system behavior. The extrapolation results, represented as time history plots, showcase exceptional accuracy in this study, overcoming the limitations of conventional numerical methods in larger temporal domains.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 694.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.