242
Views
0
CrossRef citations to date
0
Altmetric
Pure Mathematics

The study of generalized Hurwitz–Lerch zeta function and fractional kinetic equations

, , & | (Reviewing editor)
Article: 2331419 | Received 11 Dec 2023, Accepted 13 Mar 2024, Published online: 09 Apr 2024

ABSTRACT

In this research article, we provide an extended Hurwitz–Lerch zeta function using the extended beta function. We have also investigated the new generalized Hurwitz–Lerch zeta function’s exciting characteristics, such as integral representations, differential equations, the Mellin transform and special generating relations. In order to support the main result, we have additionally considered several notable specific cases. Furthermore, we have discussed the solution of the fractional kinetic equation using the new extended Hurwitz–Lerch zeta function.

MATHEMATICS SUBJECT CLASSIFICATION:

1. Introduction and preliminaries

In applied analysis and quantitative physics, special functions are crucial and play a significant role in applied analysis and mathematical physics. Special functions offer formulae for some differential equation solutions or some simple integral functions. One of the most significant members of the family of special functions is the classical beta function, also known as the first-order Euler integral. The study of beta functions constitutes the initial phase of creating the theory of special functions. Due to the numerous applications of these initial special functions in the fields of mathematics, physics, engineering and Lie theory, mathematicians and physicists devoted close attention to them. A fundamental special function, i.e. the classical beta function, plays an important part in many fields of science, including engineering, mathematics, physical science and statistics. Different kinds of special functions have evolved into essential tools for scientists and engineers in many fields of applied mathematics. Recently, many authors developed extensions to the Euler beta function, gamma function, Gauss hypergeometric function, confluent hypergeometric function, Hurwitz–Lerch zeta functions and many other functions (Garg et al., Citation2008; Khan et al., Citation2023, Citation2023; Khan et al., Citation2022; Lin & Srivastava, Citation2004; Nadeem et al., Citation2020). Inspired by the abovementioned work in this research article, we define a new generalization of Hurwitz–Lerch zeta function and discuss its properties. We have also discussed their one of the applications to find the solution of fractional kinetic equation using extended Hurwitz–Lerch zeta functions.

In the whole paper C,R0+,Z+,R+ represent the set of complex numbers, non-negative real numbers, positive integers and positive real numbers, respectively, and (z) is the real part of complex number z.

An extended beta function B(θ1,θ2;p) is defined by Chaudhry et al. (Citation1997) as

(1.1) B(θ1,θ2;p)=Bp(θ1,θ2)=01tθ11(1t)θ21ept(1t)dt,(1.1)

where (p)>0,(θ1)>0,(θ2)>0. In particular, if p = 0, we get B(θ1,θ2,0)=B(θ1,θ2).

Recently, a new extension of beta function was introduced by Khan and Husain (Citation2022) as

(1.2) Bp,qx,y,z(θ1,θ2)=01tθ11(1t)θ21Ep,q(xty(1t)z)dt,(1.2)

where x0, (θ1)>0, (θ2)>0; p,qR0+; y,zR+ and Ep,q(.) is the generalized Mittag–Leffler function defined as (Wiman, Citation1905)

Ep,q(x)=n=0xnΓ(pn+q).

We are familiar with the Hurwitz–Lerch zeta function Φ(ξ,κ,τ) (Erdélyi, Citation1953; Srivastava & Choi, Citation2001, Citation2011) defined as

(1.3) Φ(ξ,κ,τ)=m=0ξm(m+τ)κ,(1.3)
(τZ+; κC when |ξ|<1; (κ)>1 when |ξ|=1).

Many generalizations of the Hurwitz–Lerch zeta functions have been given by the researchers. For example, Goyal and Laddha (Citation1997) have introduced an extension of Hurwitz–Lerch zeta function defined as

(1.4) Φδ(ξ,κ,τ)=m=0(δ)mm!ξm(m+τ)κ,(1.4)
(δC; τZ+; κC  if  |ξ|<1; (κδ)>1 if  |ξ|=1).

Lin and Srivastava (Citation2004) also defined the Hurwitz–Lerch zeta function as

(1.5) Φζ,γη,ω(ξ,κ,τ)=m=0(ζ)ηm(γ)ωmξm(m+τ)κ,(1.5)
 (ζC; τ,γZ+; η,ωR+; η<ω if κ,ξC;η=ω, κC if |ξ|<1; η=ω, (κζ+γ)>1,|ξ|=1).

Garg et al. (Citation2008) also introduced Hurwitz–Lerch zeta function as

(1.6) Φδ,ζ;γ(ξ,κ,τ)=m=0(δ)m(ζ)m(γ)m(m+τ)κξmm!,(1.6)
(δ,ζC;γ,τZ+;κC if |ξ|<1;(κ+γδζ)>1 if |ξ|=1).

Parmar et al (Parmar & Raina, Citation2014) defined an extended Hurwitz–Lerch zeta function involving beta function (Chaudhry et al., Citation1997) as

(1.7) Φδ,ζ;γ(ξ,κ,τ;p)=m=0(δ)mm!Bp(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ,(1.7)
 (p0;δ,ζC;γ,τZ+;κC if |ξ|<1;(κ+γδζ)>1 if |ξ|=1).

The integral representation of (Equation1.3) is given by

(1.8) Φ(ξ,κ,τ)=1Γ(κ)0tκ1eτt1ξetdt=1Γ(κ)0tκ1e(τ1)tetξdt,(1.8)
((κ)>0,(τ)>0 if |ξ|1(ξ1); (κ)>1 if ξ=1).

Also, the integral representations of (Equation1.4), (Equation1.5), (Equation1.6) and (Equation1.7) are given by (Equation1.9), (Equation1.10), (Equation1.11) and (Equation1.12), respectively

(1.9) Φδ(ξ,κ,τ)=1Γ(κ)0tκ1eτt(1ξet)δdt=1Γ(κ)0tκ1e(τδ)t(etξ)δdt(1.9)
((κ)>0,(τ)>0 if |ξ|0(ξ1);(κ)>1 if ξ=1),
(1.10) Φζ,γ(η,ω)(ξ,κ,τ)=1Γ(κ)0tκ1eτt 2Ψ1[(ζ;η),(1;1);(γ;ω);ξet]dt(1.10)
((τ)>0;(κ)>0 if |ξ|0(ξ1);(κ)>1 if ξ=1),

where  2Ψ1 is the Fox–Wright function (Parmar & Raina, Citation2014).

(1.11) Φδ,ζ,γ(ξ,κ,τ)=1Γ(κ)0tκ1eτt 2F1(δ,ζ;γ;ξet)dt(1.11)
((τ)>0;(κ)>0 if |ξ|0(ξ0);(κ)>1 if ξ=1),

and

(1.12) Φδ,ζ;γ(ξ,κ,τ;p)=1Γ(κ)0tκ1eτtFp(δ,ζ;γ;ξet)dt(1.12)
(p0;(τ)>0;(κ)>0 if |ξ|0(ξ1);(κ)>1 if ξ=1),

where Fp(θ1,θ2;θ3;ξ) is the extended hypergeometric function (Chaudhry et al., Citation2004) defined by

(1.13) Fp(θ1,θ2;θ3;ξ)=m=0(θ1)mBp(θ2+m,θ3θ2)B(θ2,θ3θ2)(ξ)mm!,(1.13)
(p0,|ξ|<1;(θ3)>(θ2)>0).

Recently, Nadeem et al. (Citation2020) introduced Hurwitz–Lerch zeta function as

(1.14) Φδ,ζ;γ(ξ,κ,τ;p,q)=m=0(δ)mm!Bp,q(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ(1.14)
 (p0,q0;δ,ζC;γ,τZ+;κC if |ξ|<1;(κ+γδζ)>1 if |ξ|=1),

where beta and hypergeometric functions introduced by Choi et al. (Citation2014) are defined as

(1.15) Bp,q(θ1,θ2)=01uθ11(1u)θ21exp(puq(1u))du(1.15)
(p0, q0; (θ1)>0; (θ2)>0),

and

(1.16) Fp,q(θ1,θ2;θ3;ξ)=m=0(θ1)mBp,q(θ2+m,θ3θ2)B(θ2,θ3θ2)(ξ)mm!(1.16)
(θ10,p0, q0,|ξ|<1;(θ3)>(θ2)>0),

respectively.

Motivated and inspired by the above extensions and generalizations of Hurwitz–Lerch zeta function (Nadeem et al., Citation2020; Parmar & Raina, Citation2014; Raina & Chhajed, Citation2004; Srivastava & Choi, Citation2011), we now find a more generalized form of extended Hurwitz–Lerch zeta function involving the extended beta function introduced by Khan and Husain (Citation2022) and Khan et al. (Citation2022), and we also study some particular cases, various integral representations and derivative formulae, the Mellin transform and the generating relations. Additionally, we use the extended Hurwitz–Lerch zeta function to find the solution of fractional kinetic equation.

2. Generalization of Hurwitz–Lerch zeta function

Here, we introduce Hurwitz–Lerch zeta function in terms of extended beta function (Equation1.2) as

(2.1) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=Φδ,ζ;γx,y,z(ξ,κ,τ;p,q)=m=0(δ)mm!Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ,(2.1)
 (p0,q0;δ,ζC;γ,τZ+;κC if |ξ|<1;(κ+γδζ)>1 if |ξ|=1;y,zR+).

2.1. Particular cases

Now, we discuss some well-known results obtained by putting the value of parameters in the generalized Hurwitz–Lerch zeta function (Equation2.1) in the following remarks.

Remark 2.1.

Substituting δ=1, y=z=1 and p=q=1 in (Equation2.1), we get Hurwitz–Lerch zeta function introduced by Lin and Srivastava (Citation2004):

(2.2) Φζ,γ1,1(ξ,κ,τ;x) =Φ1,ζ;γx,1,1(ξ,κ,τ,1,1) =m=0B1,1x,1,1(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ,(2.2)
 (x0;ζ,γ,τ+;κif|ξ|<1;(κ+γ1ζ)>1) if |ξ|=1).

Remark 2.2.

If δ=γ=1, y=z=1 and p=q=1 in (Equation2.1), we get a particular case of (Equation1.4) (Goyal & Laddha, Citation1997) as

(2.3) Φ1,ζ,1x,1,1(ξ,κ,τ;1,1)=m=0B1,1x,1,1(ζ+m,1ζ)B(ζ,1ζ)ξm(m+τ)κ,(2.3)
((x)>0;ζ;τ +;κif|ξ|<1;(κ)>1if|ξ|=1).

Remark 2.3.

If we set x = 1 and δ=γ=1;p=q=1 in (Equation2.2), we get a special case of the Hurwitz–Lerch zeta function as

(2.4) Φδ(ξ,κ,τ;1) =Φ1,ζ,11,1,1(ξ,κ,τ;1,1) =m=0B1,11,1,1(ζ+m,1ζ)B(ζ,1ζ)ξm(m+τ)κ,(2.4)
(δC;τZ+;κC if |ξ|<1;(κ)>1 if |ξ|=1).

Remark 2.4.

The Hurwitz–Lerch zeta function (Equation2.1) has the following limiting case:

(2.5) Φζ,γ(ξ,κ,τ;p,q;x,y,z)=1mu×lim|δ|{Φζ,γ(ξδ,κ,τ;p,q,x,y,z)}=1mu×m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)m!ξm(m+τ)κ,1mu(2.5)
(x0,ζ;γ,τ+,κif|ξ|<1;(κ+γζ)>1if|ξ|=1).

Remark 2.5.

Putting x=0, y=z=1 and p=q=1 in (Equation2.1) and (Equation2.3), we get (Equation1.6) and (Equation1.4), respectively, as

(2.6) Φδ,ζ,γ0,1,1(ξ,κ,τ,1,1)=Φδ,ζ;γ(ξ,κ,τ)=m=0(δ)m(ζ)m(γ)m(m+τ)κξmm!(2.6)

and

(2.7) Φζ(ξ,κ,τ;0) =Φ1,ζ,10,1,1(ξ,κ,τ,1,1) =m=0B1,10,1,1(ζ+m,1ζ)B(ζ,1ζ)ξm(m+τ)κ =m=0(ζ)mm!ξm(m+τ)κ=Φζ(ξ,κ,τ).(2.7)

3. Integral representation and derivative formula

In this section, we introduce the various integral representations and differential formula of the extended generalized Hurwitz–Lerch zeta function (Equation2.1) as follows:

Theorem 3.1

The following integral representation of extended Hurwitz–Lerch zeta function holds true:

(3.1) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=1Γ(κ)0tκ1eτtFp,qx,y,z(δ,ζ,γ;ξet) dt,(3.1)
 ((x)0;x=0,(τ)>0;(κ)>0 if |ξ|0;(κ)>1 if ξ=1,p,q,y,z>0,(γ)>(ζ)>0).

Proof.

We have (Equation2.1)

Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=Φδ,ζ,γx,y,z(ξ,κ,τ,p,q)=m=0(δ)mm!Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ.

The identity below is obeyed by the Eulerian integral of the gamma function (see (Srivastava & Choi, Citation2011))

(3.2) 1(m+τ)κ=1Γ(κ)0tκ1e(m+τ)tdt(3.2)
(min{(κ),(τ)}>0;mN0),

when the order of summation and integration are exchanged in (Equation2.1) by using (Equation3.2), we obtain

Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z) =1Γ(κ)0tκ1eτt(m=0(δ)mBp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(ξet)mm!)dt.

Using (Equation1.15) and (Equation1.16), we obtain the desired result (Equation3.1).

Theorem 3.2

If (x)>0;x=0,(ζ)>(γ)>0,\allowbreakmin{(κ),(τ)}>0, then the following integral representation holds true:

(3.3) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=1B(ζ,γζ)0tζ1(1+t)γEp,q(xty(1t)z)Φδ(1+t,κ,τ) dt.(3.3)

Proof.

The integral representation of generalized beta function (Khan & Husain, Citation2022)

(3.4) Bp,qx,y,z(θ1,θ2)=0tθ11(1+t)θ1+θ2Ep,q(xty(1t)z) dt,(3.4)

on putting θ1=ζ+m and θ2=γζ in (Equation3.4), we have

(3.5) Bp,qx,y,z(ζ+m,γζ)=0tζ+m1(1+t)γ+mEp,q(xty(1t)z)dt,(3.5)

from (Equation3.5) and (Equation2.1), we get

align*align*
(3.6) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=1B(ζ,γζ)0tζ1(1+t)γEp,q(xty(1t)z)×(m=0(δ)mm!(ξt)m(1+t)m1(m+τ)κ)dt.(3.6)

Now, in view of (Equation1.4) in (Equation3.6), we get the desired result (Equation3.3).

Theorem 3.3

For x0, (δ)>0, (τ)>0,\allowbreak (κ)>0 if |ξ|1; (κ)>1 if ξ=1, the following integral representation holds true

(3.7) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=1Γ(δ)0tδ1etΦζ,γ(ξt,κ,τ;p,q;x,y,z) dt(3.7)

where Φζ,γ(ξt,κ,τ;p,q;x,y,z) is defined by (Equation2.5).

Proof.

The definition of the integral form of the Pochhammer symbol (δ)m (Srivastava & Choi, Citation2001) is

(3.8) (δ)m=1Γ(δ)0tδ+m1etdt,(3.8)

using (Equation3.8) in (Equation2.1) and interchanging the order of summation and integration under the given condition in (Equation3.7), we get

(3.9) Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z)=1Γ(δ)0tδ1etm=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(ξt)mm!(m+τ)κdt.(3.9)

Now, with the help of (Equation2.5) in (Equation3.9), we get (Equation3.7).

Theorem 3.4

For any positive integer m, the extended Hurwitz–Lerch zeta function Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z) has the following differential formula:

(3.10) dmdξm{Φδ,ζ,γ(ξ,κ,τ;p,q;x,y,z)}=(δ)m(ζ)m(γ)mΦδ+m,ζ+m,γ+m(ξ,κ,τ+m;p,q;x,y,z).(3.10)

Proof.

The differentiation of (Equation2.1) is

(3.11) d{Φδ,ζ,γ(ξ,κ,τ;p,q;x,y,z)}=m=0(δ)m(m1)!Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξm1(m+τ)κ,(3.11)

by changing m by m +1 in (Equation3.11) and applying the identity

B(ζ,γζ)=γζB(ζ+1,γζ), (τ)m+1=τ(τ+1)m,

we get

d{Φδ,ζ,γ(ξ,κ,τ;p,q;x,y,z)}=δζγΦδ+1,ζ+1,γ+1(ξ,κ,τ+1,p,q;x,y,z).

Now, the procedure of recursive application provides the desired result (Equation3.10).

4. Mellin transform and some generating relations

In this section, we deal with the Mellin transform and some generating relations of extended Hurwitz–Lerch zeta function.

An appropriate integrable function f(b) with index Ψ has the following definition for its Mellin transform:

(4.1) M{f(b):bΨ}=0bΨ1f(b)db;(0<b<).(4.1)

Theorem 4.1

The Mellin transformation of the function Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z) is defined as

(4.2) M{Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z):xΨ}=πsin(Ψπ)B(ζ+yΨ,γζ+zΨ)Γ(1Ψp)B(ζ,γζ)Φδ(ξt,κ,τ),(4.2)

((x)>0,(Ψ)>0,(ζ+m+Ψ)>0).

Proof.

In view of (Equation4.1), the Mellin transformation of (Equation2.1) is given by

(4.3) M{Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z):xΨ}=0xΨ1Φδ,ζ,γ(ξ,κ,τ;p,q;x,y,z)dx=0xΨ1(m=0(δ)mm!Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξm(m+τ)κ)dx=1B(ζ,γζ)m=0(δ)mm!ξm(m+τ)κ×0xΨ1Bp,qx,y,z(ζ+m,γζ)dx=1B(ζ,γζ)m=0(δ)mm!(ξt)m(m+τ)κ0xΨ1=01tζ1(1t)γζ1Ep,q(xty(1t)z)dt dx.(4.3)

Interchanging the order of integration in (Equation4.3), we have

(4.4) M{Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z):xΨ}=1B(ζ,γζ)m=0(δ)mm!(ξt)m(m+τ)κ01tζ1(1t)γζ1×(0xΨ1Ep,q(xty(1t)z)dx) dt.(4.4)

The second part of (Equation4.4)

(4.5)  0xΨ1Ep,q(xty(1t)z)dx=(ty)Ψ((1t)z)Ψ0γΨ1Ep,q(γ)=tyΨ(1t)zΨ0γΨ1Ep,q(γ),(4.5)

and recall

(4.6) 0γΨ1Ep,q,δη(ωγ)=Γ(Ψ)Γ(ηΨ)Γ(η)ωΨΓ(δΨp).(4.6)

Putting δ=η=1 and ω = 1 in (Equation4.6), we get

(4.7) 0γΨ1Ep,q,(γ)=Γ(Ψ)Γ(1Ψ)Γ(1Ψp),(4.7)

therefore, by (Equation4.5)

(4.8)  0xΨ1Ep,q(xty(1t)z)dx=tyΨ(1t)zΨΓ(Ψ)Γ(1Ψ)Γ(1Ψp).(4.8)

Also,

(4.9) Γ(Ψ)Γ(1Ψ)=πsin(πΨ).(4.9)

Using (Equation4.4), (Equation4.8), (Equation4.9) and (Equation1.4), we get the required result (Equation4.2).

Theorem 4.2

The Hurwitz–Lerch zeta function Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z) has the following generating relation:

(4.10)  n=0(δ)nΦδ+n,ζ,γ(ξ,κ,τ;p,q,x,y,z)tnn!=(1t)δΦδ+n,ζ,γ(ξ1t,κ,τ;p,q,x,y,z),(4.10)
(x0,p>0,δ,ζ,γC and |t|<1).

Proof.

In LHS of (Equation4.10), using (Equation2.1), we get

(4.11)  n=0(δ)nΦδ+n,ζ,γ(ξ,κ,τ;p,q,x,y,z)tnn!=n=0(δ)n{m=0(δ+n)mBp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξmm!(m+τ)κ}tnn!.(4.11)

With the identity (δ)n(δ+n)m=(δ)m(δ+m)n and interchanging the order of summations in (Equation4.11), we have

(4.12) =m=0(δ)mBp,qx,y,z(ζ+m,γζ)B(ζ,γζ){n=0(δ+m)ntnn!}ξmm!(m+τ)κ.(4.12)

We know

(4.13) (1t)δm=n=0(δ+m)ntnn!,(|t|<1).(4.13)

Now, using (Equation4.13) in (Equation4.12), we get the desired result (Equation4.10).

Theorem 4.3

The Hurwitz–Lerch zeta function Φδ,ζ;γ(ξ,κ,τ;p,q;x,y,z) holds the following generating relation:

(4.14)  n=0(k)nn!Φδ,ζ,γ(ξ,k+n,τ,p,q,x,y,z)tn=Φδ,ζ,γ(ξ,κ,τt,p,q,x,y,z)(4.14)

Proof.

In RHS of (Equation4.14), applying (Equation2.1), we get

(4.15) Φδ,ζ,γ(ξ,κ,τt,p,q,x,y,z)=m=0(δ)mBp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξmm!(m+τt)k=m=0(δ)mBp,qx,y,z(ζ+m,γζ)B(ζ,γζ)ξmm!(m+τ)k(1tm+τ)k.(4.15)

Using (Equation4.13) in (Equation4.15) and then applying (Equation2.1), we get the desired result (Equation4.14).

5. Fractional kinetic equation

The Hurwitz–Lerch zeta function (Equation2.1) is used to discuss the fractional kinetic equation (FKE). The non-stationary problem (Hohenberg & Halperin, Citation1977), turbulent flow (Novikov, Citation1994), diffusion (Mainardi, Citation1994) and kinetics (Gelfand & Shilov, Citation1964) are the various field in which the solution of FKE is used. The relationship given by Haubold and Mathai (Citation2000) is defined as

(5.1) dNdℓ=σ(N)+p(N),(5.1)

where reaction rate is denoted by N=N(), σ(N)=:σ is the destruction rate, p=p(N) is the rate of production and N signifies the function defined by N()=N();>0.

We reach a specific case of (Equation5.1) under homogeneties where the quantity N as (Haubold & Mathai, Citation2000; Kourganoff, Citation1973):

(5.2) dNidℓ=ciNi(),(5.2)

where Ni(=0)=N0 is the initial condition, representing the number of density of species i at time =0;ci>0. If the index i is not included in the integration of both sides of (Equation5.2), we obtain

(5.3) N()N0=c0 0D1N(),(5.3)

where the standard fractional integral operator is denoted by  0D1.

Also, Haubold and Mathai (Citation2000) investigated a fractional generalization of standard kinetic (Equation5.2) as follows:

(5.4) N()N0=c0ω 0DωN(),(5.4)

where the well-known Riemann–Liouville fractional integral operator  0Dω is defined as

(5.5)  0Dωf()=1Γ(ω)0(v)ω1f(v)dv(>0,(ω)>0),(5.5)

and the solution of (Equation5.5) is

(5.6) N()=N0m=0(1)mΓ(ωm+1)(cℓ)ωk.(5.6)

(Haubold & Mathai, Citation2000) obtained fractional kinetic equation as

(5.7) N()N0f()=c0ω 0DωN().((ω)>0),(5.7)

where the given species, N() is the number of density at time , N0=N(0) is the number of density of that species at time =0, c is the constant and fL(0,).

Applying the Laplace transform to (Equation5.7),

(5.8) L{N();P}=N0(m=0(cω)mP)F(P)(mN0,|cP|<1)(5.8)
(5.9) F(P)=L{f();P}=0ePf()dℓ((P)>0).(5.9)

We now move on to consider our new extended Hurwitz–Lerch zeta function (Equation2.1) in order to derive the solution of the generalized fractional kinetic equations.

Theorem 5.1

If d > 0, ω > 0 and τd, c > 0, the solution of the equation is

(5.10) N()N0{Φδ,ζ;γ(ωξ,κ,τ;p,q;x,y,z)}=d0ω 0DωN();(5.10)

is obtained by the following relation:

(5.11) N() =N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ×Γ(+m+1)+mEω,+m+1(dωω).(5.11)

where Eϕ,ψ(ξ) is defined as

Eϕ,ψ(ξ)=m=0ξmΓ(ϕm+ψ);((ϕ)>0,(ψ)>0).

Proof.

The Riemann–Liouville fractional integral operator has the following Laplace transform:

(5.12) L{ 0Dωf();P}=PωF(P).(5.12)

From (Equation5.10), we have

(5.13) L{N();P} =N0L{Φδ,ζ;γ(ωξ,κ,τ;p,q;x,y,z);P}d0ωL{ 0DtωN();P}N(P) =N0(0ePm=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)×(δ)mm!(tω+1)m(m+τ)κdℓ)dωPωN(P)N(P)+dωPωN(P) =N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!×1(m+τ)κ0ePωm+mdℓN(P)+dωPωN(P) =N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!×1(m+τ)κΓ(+m+1)P+m+1N(P) =N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ×Γ(+m+1)P(+m+1)(1+dωPω)1N(P) =N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ×Γ(+m+1)P(+m+1)r=0(dωPω)r.(5.13)

Applying the inverse Laplace transform into (Equation5.13), we obtain

L1{N(P)}=N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ ×Γ(+m+1)L1{r=0dωrPωrm1}N()=N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ ×Γ(+m+1){r=0dωrωr++mΓ(ωr++m+1)}N()=N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ ×Γ(+m+1)+m{r=0dωrωrΓ(ωr++m+1)}
N()=N0m=0Bp,qx,y,z(ζ+m,γζ)B(ζ,γζ)(δ)mm!1(m+τ)κ ×Γ(+m+1)+mEω,+m+1(dωω),

which is the required result.

6. Conclusion

The results obtained in this manuscript are connected with the Hurwitz–Lerch zeta function that will be used to solve a variety of problems of fractional kinetic equations, integral transforms, integral representation and generating relations. The fraction kinetic equations in various forms have been broadly and usefully employed when describing and solving several important problems in physics and astrophysics. Recently, fractional kinetic equations associated with some special functions have proven themselves to be useful tools for applications in many fields of research. Because of the effectiveness and great importance of the fractional kinetic equation in certain astrophysical problems, the authors develop a fractional kinetic equation along with the Hurwitz–Lerch zeta function.

It is worth stressing that the generalized Hurwitz–Lerch zeta function obtained and the results computed are amenable to further generalization and investigation. We have attempted to exploit the close connection of the generalized Hurwitz–Lerch zeta function with several important special functions and compute certain integral representations, limiting form and differential formulae, the Mellin transforms and generating relation. Therefore, the investigated results in this paper would at once give many results involving special functions occurring in the problem of astrophysics, mathematical physics, and engineering.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Chaudhry, M. A., Qadir, A., Rafique, M., & Zubair, S. M. (1997). Extension of Euler’s beta function. Journal of Computational and Applied Mathematics, 78(1), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1
  • Chaudhry, M. A., Qadir, A., Srivastava, H. M., & Paris, R. B. (2004). Extended hypergeometric and confluent hypergeometric functions. Applied Mathematics and Computation, 159(2), 589–602. https://doi.org/10.1016/j.amc.2003.09.017
  • Choi, J., Rathie, A. K., & Parmar, R. K. (2014). Extension of extended beta, hypergeometric and confluent hypergeometric functions. Honam Mathematical Journal, 36(2), 357–385. https://doi.org/10.5831/HMJ.2014.36.2.357
  • Erdélyi, A. (1953). Higher transcendental functions (Vols. vol-1). MacGraw-Hill.
  • Garg, M., Jain, K., & Kalla, S. L. (2008). A further study of general Hurwitz–Lerch zeta function. Algebras Groups Geom, 25, 311–319.
  • Gelfand, I. M., & Shilov, G. E. (1964). Generalized function, application of harmonic analysis (Vol. 4). Academic Press.
  • Goyal, S. P., & Laddha, R. K. (1997). On the generalized Riemann zeta functions and the generalized Lambert transform. Ganita Sandesh, 11(2), 99–108.
  • Haubold, H. J., & Mathai, A. M. (2000). The fractional kinetic equation and thermonuclear functions. Astrophysics and Space Science, 327(1/4), 53–63. https://doi.org/10.1023/A:1002695807970
  • Hohenberg, P. C., & Halperin, B. I. (1977). Theory of dynamic critical phenomena. Reviews of Modern Physics, 49(3), 435–479. https://doi.org/10.1103/RevModPhys.49.435
  • Khan, N. U., & Husain, S. (2022). A note on extended beta function involving generalized Mittag-Leffler function and its applications. TWMS Journal of Applied and Engineering Mathematics, 12(1), 71.
  • Khan, N. U., Husain, S., & Khan, M. I. (2023). Analysis of an extended Whittaker function and its properties. Honam Mathematical Journal, 45(2), 184–197.
  • Khan, N. U., Husain, S., & Khan, O. (2023). A novel kind of new Beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics, 52(4), 945–955. https://doi.org/10.15672/hujms.1153572
  • Khan, N. U., Husain, S., Usman, T., & Araci, S. (2022). Results concerning the analysis of multi-index Whittaker function. Journal of Mathematics, 2022, 1–10. https://doi.org/10.1155/2022/3828104
  • Kourganoff, V. (1973). Introduction to the physics of stellar interiors (Vol. 34). D. Reidel Publishing Co.(Astrophysics and Space Science Library).
  • Lin, S. D., & Srivastava, H. M. (2004). Some families of the Hurwitz–Lerch zeta functions and associated fractional derivative and other integral representations. Applied Mathematics and Computation, 154(3), 725–733. https://doi.org/10.1016/S0096-3003(03)00746-X
  • Mainardi, F. J. (1994). Alloys Compd. Chaos, Solitons & Fractals, 211/212, 534. https://doi.org/10.1016/0925-8388(94)90560-6
  • Nadeem, R., Usman, T., Nisar, K. S., & Baleanu, D. (2020). Analytical properties of the Hurwitz–Lerch zeta function. Advances in Difference Equations, 2020(1), 1–15. https://doi.org/10.1186/s13662-020-02924-2
  • Novikov, E. A. (1994). On Markov modelling of turbulence. Journal of Fluid Mechanics, 280, 69–93. https://doi.org/10.1017/S0022112094002855
  • Parmar, R. K., & Raina, R. K. (2014). On a certain extension of the Hurwitz–Lerch zeta function. Annals of West University of Timisoara-Mathematics and Computer Science, 52(2), 157–170. https://doi.org/10.2478/awutm-2014-0017
  • Raina, R. K., & Chhajed, P. K. (2004). Certain results involving a class of functions associated with the Hurwitz zeta function. Acta Mathematica Universitatis Comenianae, New Series, 73(1), 89–100.
  • Srivastava, H. M., & Choi, J. (2001). Series associated with the zeta and related functions (Vol. 530). Springer Science and Business Media.
  • Srivastava, H. M., & Choi, J. (2011). Zeta and q-zeta functions and associated series and integrals. Elsevier. https://doi.org/10.1016/C2010-0-67023-4
  • Wiman, A. (1905). Uber den Fundamentalsatz in der Teorie der Funktionen. Acta Mathematica, 29(1), 191–201. https://doi.org/10.1007/BF02403202